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Abstract

Numerical and experimental investigations conducted into the dynamics and stability of a range of milling opera-
tions are presented in this article. A unified mechanics based model developed to study workpiece-tool system dynamics
is used for the numerical studies. This model, which allows for both regenerative effects and loss of contact effects, can
be used for studying partial-immersion, high-immersion, and slotting operations. Loss of stability of periodic motions
associated with milling operations is assessed by using Poincaré sections, and the numerical predictions of stable and
unstable motions are found to compare well with corresponding experimental data. Bifurcations experienced by the
periodic motions with respect to parameters such as axial depth of cut are numerically examined and discussed. The
sensitivity of dynamics to tooth passing period, feed rate, and feed direction is also discussed. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

During certain cutting conditions, the motions of the workpiece—tool system are characterized by large
amplitudes, which are not desirable for obtaining a good surface finish. The undesirable motions, which are
often referred to as chatter, can result in wavy surfaces on the workpiece, inaccurate dimensions, and
excessive tool wear. Following the initial efforts of Arnold (1946), an extensive number of efforts have been
devoted to understanding chatter produced by regenerative mechanisms (e.g. Merritt, 1965; Tobias and
Fishwick, 1958; Tobias, 1965; Tlusty, 1985). Tlusty and Polacek (1963) examined the possibility of chatter
due to nonregenerative mechanisms such as mode coupling. Another nonregenerative mechanism that may
lead to chatter is associated with nonlinearities due to intermittent engagement between a tool and a
workpiece. This was numerically studied by Tlusty and Ismail (1981). In a related study, Balachandran
et al. (1997) examined the influence of loss of contact type nonlinearities on the dynamics of an elastic
structure subjected to aharmonic excitations. Davies and Balachandran (1999) examined the importance of
modeling loss of contact type nonlinearities during partial-immersion milling operations through experi-
ments and numerical simulations.
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A common approach, which is used to avoid chatter or move away from a region of chatter, is to change
the parameters such as the axial depth of cut and the spindle speed. In order to choose parameters to ensure
stable milling operations, a thorough understanding of the process dynamics for a range of milling oper-
ations is necessary. Related efforts in this regard include the studies of Sridhar et al. (1968), Tlusty (1985),
Minis and Yanushevsky (1992), Altintas and Budak (1995), and Altintas and Lee (1996). By and large, in
these efforts, predictions of instabilities have been made for full-immersion and high-immersion milling
operations during which regenerative effects are likely to be dominant. As the immersion ratio is decreased,
loss of contact effects due to intermittent cutting action associated with each cutter flute become important.
There may also be a range of milling operations for which both regenerative effects and loss of contact
effects can be important for prediction of instabilities. The consideration of only the regenerative effects in
the studies of Sridhar et al. (1968), Minis and Yanushevsky (1992), and Altintas and Budak (1995) has
enabled the use of tools available for stability analysis of linear systems with time periodic and time delay
terms. However, the consideration of loss of contact effects as in the studies of Balachandran and Zhao
(1999a,b) requires different stability considerations.

With the aim of developing a model for studying a range of milling operations, Balachandran and Zhao
(1999a,b) developed a unified mechanics based model with features such as partial engagement of a tool
with a workpiece, regenerative and loss of contact effects, tool flexibility, and workpiece flexibility. In the
article of Balachandran and Zhao (1999a), results from the unified mechanics based model were compared
with earlier results available in the literature and the importance of considering helical angle effects was
pointed out. Balachandran and Zhao (1999b) presented a detailed description of the unified mechanics
based model and provided preliminary results on dynamics and stability of milling operations obtained by
using this model. The present article is a companion article to our earlier one, in which the focus is on
model development. The focus of the current article is on dynamics and stability of milling operations.
Stability charts and bifurcation diagrams for various milling operations are provided here along with a
discussion on the sensitivity of the system dynamics to parameters such as immersion ratio and feed rate.
The rest of this article is organized as follows. In Section 2, some features of the current model are outlined,
and the results obtained by using this model are presented in the next section and compared with the
corresponding experimental data. For completeness, Appendix A is provided to include some model details.

2. Unified mechanics based model

In this section, some aspects of the unified mechanics model are discussed. (A full discussion on the
model is provided in the articles of Balachandran and Zhao (1999a,b)). In Fig. 1 shown below, a multi-
degree-of-freedom model for the workpiece—tool system is illustrated along with a cylindrical end mill. The
feed direction and spindle rotation are shown for an up milling operation. The cutter has a diameter 2R, N
number of flutes, and a helix angle #. The X-direction is oriented along the feed direction of the cutter and
the feed rate is specified by f. The vertical axis of the tool is oriented along the Z-direction. Since the
primary interest is in capturing the dynamic effects in the horizontal plane, and since the resonance fre-
quencies associated with torsional modes and Z-direction vibration modes are expected to be higher than
those associated with the other modes, they are not included in the current model.

The system differential equations are of the form

Mgy + ¢y + kg = Fr(t;71, 12),

myg, + ¢,qy + kyqy, = F,(t;11,72),
My + CuGu + kugu = Fu(;71,12),

myg, + ¢ogy + kg = (8571, 72),
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Fig. 1. Workpiece—tool system model.

where ¢ represents time, an overdot indicates differentiation with respect to time, the variables ¢, and g, are
used to describe tool motions, and the variables ¢, and ¢, are used to describe workpiece motions. Further,
m, and m, are mass components for the tool, k, and k, are the stiffness components for the tool, ¢, and ¢, are
the damping components for the tool, and F; and F, are forces acting on the milling tool. For the work-
piece, m, and m, are mass components, k, and k, are stiffness components, ¢, and ¢, are damping com-
ponents, and F, and F, are forces acting on the workpiece due to the cutting action. Other parameters in the
figure that have not explicitly appeared in the system equations are the angular position of cutting tooth 6,
the starting cutting angle 0, the exit angle 0., the tangential cutting force F{, and the radial cutting force F;.

The cutting forces are functions of machining parameters, such as immersion ratio and feed rate, and
system dynamics. To calculate the cutting forces, the whole milling cutter is divided into a stack of in-
finitesimal disk elements along Z-axis. For each disk element, a refined orthogonal cutting method is ap-
plied to obtain the cutting force components. (As this method is not discussed in Balachandran and Zhao
(1999b), a description of refined orthogonal cutting method is included for completeness in Appendix A.)
The total cutting forces are then summed, through a spatial integration scheme, over all elements. The two
spatial integration limits are functions of the workpiece—tool system dynamics, as discussed by Bala-
chandran and Zhao (1999b). Numerical simulations are carried out by using the system of Egs. (1) and the
stability of motions associated with different milling operations are studied. For a stable cutting operation,
the system motion will be a periodic motion with the basic frequency determined by the spindle rotation
speed. Loss of stability of this periodic motion is assessed by using Poincare sections in the numerical
simulations (e.g., Nayfeh and Balachandran, 1995).

3. Results and discussion

In this section, results obtained in numerical and experimental investigations into the dynamics and
stability of various milling operations are presented. The experiments were conducted on a high-speed
machining testbed in the Manufacturing Engineering Laboratory of the National Institute of Standards
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Table 1
Modal parameters of the tool
Frequency (Hz) Damping (%) Stiffness (N/m) Mass (Kg)
X 900.03 1.39 8.79 x 10° 2.75 x 1072
Y 911.65 1.38 9.71 x 10° 2.96 x 1072

and Technology (NIST). The cutter has a 30° helix angle and a diameter of 12.7 mm. The tool modal
parameters, which were determined from transfer functions, are shown in Table 1. The workpiece is a rigid
aluminum block whose specific cutting energy is chosen to be 6.0 x 103 N/m? and the proportionality factor
is taken to be 0.3. For all the studies, the feed rate is fixed at 0.102 mm/tooth unless otherwise stated.

3.1. Stability charts for various immersions

For the corresponding simulations, the cutter is modeled as having a flat end. In Fig. 2, stability charts
are provided in the space of axial depth of cut (ADOC) and spindle speed for milling operations ranging
from full-immersion (slotting) to partial (10%) immersion cuts. (When the radial depth of cut (RDOC) is
equal to the cutter diameter, there is 100% immersion or full-immersion of the tool in the workpiece.) As
noted earlier, the loss of stability of a periodic motion is assessed by using a Poincaré section (e.g. Nayfeh
and Balachandran, 1995). To construct the stability charts, the stability limits are obtained by gradually
increasing the axial depth of cut while holding all of the other parameters constant until an instability is
detected. This procedure is repeated at different spindle speeds to construct the stability diagram. In the
different charts, the typical bifurcation associated with a loss of stability of a periodic motion is a Neimark
bifurcation. The exceptions where period-doubling bifurcations are believed to occur are marked by dia-
mond shaped markings.

For full-immersion operations, typical lobe-shape patterns that can be predicted on the basis of re-
generative effects alone are observed. The loss of stability in all cases are found to be due to Neimark
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Fig. 2. Stability charts for 100%, 50%, 25%, and 10% immersion milling operations.
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bifurcations of periodic motions. But as the immersion ratio is reduced, distortions from the lobe structure
seen for the full-immersion case are noticeable. In addition, the charts for the up milling and down milling
cases are different from one another. These differences are believed to be due to the loss of contact effects
that become prominent as the immersion ratio is reduced. In some cases, it appears that the lobes undergo
splitting. Also, period-doubling bifurcations are found in addition to Neimark bifurcations. The post-
bifurcation motions may be associated with chatter.

3.2. Comparisons with experimental results and bifurcation diagrams

As discussed in the context of Fig. 2, stability charts of partial-immersion milling operations can be
determined by both regenerative effects as well as loss of contact effects, and hence, the charts can be
qualitatively and quantitatively different from those predicted on the basis of linear, time periodic systems
with time delays. Experiments were conducted to verify the stability predictions made for a 25% immersion
down milling operation. In order to account for the round nose of the cutter used in the experiments, the
specific cutting energy of aluminum is chosen to be 2.939 x 10® N/m? in the corresponding simulations. The
stability predictions obtained through time domain simulations are compared with experimental results in
Fig. 3. In addition, stability predictions based on a previous model, which includes only regenerative effects,
are also provided. It is seen that the stability predictions based on the model, which includes both re-
generative and loss of contact effects, are in good agreement with the experimental results. In particular, at
high spindle speeds, stability predictions based on a model that includes only regenerative effects differ
considerably from experimental observations. However, numerical results based on simulations, which
account for both regeneration and loss of contact effects, are in good agreement with the experiments.

For 25% immersion down milling operations, the numerically constructed bifurcation diagrams obtained
at spindle speeds of 20,000 and 11,000 rpm are shown in the first and second columns of Fig. 4, respectively.
The diagrams obtained for the forward and reverse sweeps of the control parameter ADOC in each case are
shown. The occurrence of a Neimark bifurcation at an ADOC of about 0.9 mm is suggested by the results

5 T 7 T
I 1 " I
i i ;! Stability limits (numerical,present)
45+ 11 B O P B o St bl . | -
N - [ able cuts (experlmgnta )
| 1 I' | o Unstable cuts (experimental)
4 1 ,v . . ||
I
i |
35 i |
— I !
€ | |
E 3 o
=] I |
e I I
225f q
s |
[=) 1
§ 2
<
15F-
1
05 Te) -
0 L I

5 10 15 20
Spindle Speed (krpm)

Fig. 3. Stability predictions for 25% immersion down milling operation.
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Fig. 4. Bifurcation diagrams on Poincaré sections for 20,000 rpm case in the first column and 11,000 rpm case in the second column:
(a) forward sweep of ADOC and (b) backward sweep of ADOC.

shown for the 20,000 rpm case, and the occurrence of a period-doubling bifurcation at an ADOC of about
1.0 mm is suggested by the results shown for the 11,000 rpm case. The characteristics of the post-bifurcation
motions are different in the two cases.

In Fig. 5, time histories, projections of state-space plots, power spectra, and Poincaré sections associated
with pre-bifurcation and post-bifurcation motions at a spindle speed of 20,000 rpm are shown. In the last
row, the corresponding experimental results are included. The pre-bifurcation motion, which corresponds
to a ADOC of 0.76 mm, is a stable periodic motion. The post-bifurcation motion, which corresponds to a
ADOC of 1.20 mm, is a stable two-period quasiperiodic motion. This motion follows a Neimark bifur-
cation, which is responsible for the introduction of the incommensurate frequency f; that is close to the tool
natural frequency. Stable and unstable cuts are associated with the pre-bifurcation and post-bifurcation
motions, respectively. There is also a good agreement between the simulation results and the experimental
results. In Fig. 6, features associated with pre-bifurcation and post-bifurcation motions at a spindle speed
of 11,000 rpm are shown. A period-doubling bifurcation introduces a subharmonic of the basic frequency
in the post-bifurcation motion. In Fig. 7, numerical results are presented to illustrate the occurrence of a
subcritical Neimark bifurcation at a spindle speed of 5000 rpm. The occurrence of subcritical bifurcations
are important to note because typically, when one encounters chatter in an experimental situation, a
tendency is to reduce the ADOC. This reduction needs to be sufficient to take one out of the subcritical
region for realizing stable cutting.

3.3. Tooth contact time variation

As discussed by Balachandran and Zhao (1999b), a common assumption made in milling models is that
the tooth contact time is constant and does not change from one spindle cycle to the next. The numerical
results presented in Fig. 8 show how the tooth contact time for a single tooth changes from one spindle
cycle to another during long-time motions for a spindle speed of 20,000 rpm. The ADOC is used as a
control parameter and it is varied in a quasi-static manner to generate the results shown in the figure. The
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Fig. 5. Pre-bifurcation and post-bifurcation motions at 20,000 rpm: (a) ADOC = 0.76 mm (stable cut) and (b) ADOC = 1.20 mm
(unstable cut).

contact time determined over each cycle of about 50 cycles of long-time motions is shown at each value of
ADOC. The graph can be divided into three regions. For ADOC less than 0.75 mm, the contact time
increases monotonically with respect to ADOC but remains constant from one spindle cycle to next at each
ADOC. The associated motions, which are periodic at the tooth cutting frequency, are characterized by
“small” amplitude motions. The near linear variation in the contact time can be attributed to the tool helix
angle. For ADOC larger than 0.9 mm, there is a scatter in the tooth contact time variation at each ADOC.
In these regions, unstable cuts are associated with the system motions. The region corresponding to a
ADOC larger than 0.75 mm and less than 0.9 mm is a critical region because the loss of stability of periodic
motion leading to chatter occurs at the end of this region. It is quite clear from the graph that even prior to
the Neimark bifurcation point at an ADOC of about 0.9 mm, there is a considerable variation in the tooth
contact time from one spindle cycle to the next cycle of the stable motions. So, models assuming a constant
contact time are likely to lead to erroneous results in predictions of instabilities. Here, it is believed that the
partial tooth engagement feature described by Balachandran and Zhao (1999b) is important for capturing
the tooth contact time variation accurately.

3.4. Effect of number of previous tooth pass periods on stability

When more than one tooth cutting action is involved in the formation of the workpiece surface, an
appropriate number of previous tooth passing periods needs to be considered to fully account for the
multiple regeneration effects. In some cases, the dynamic uncut chip thickness, which is described by
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Fig. 6. Pre-bifurcation and post-bifurcation motions at 11,000 rpm: (a) ADOC = 0.60 mm (stable cut) and (b) ADOC = 1.14 mm
(unstable cut).

Eq. (A.3) in Appendix A, may need to be determined by considering at least two or more previous tooth
cutting actions. This means that the index j in Eq. (A.4) needs to have an integer value larger than or equal
to two. The importance of considering the appropriate number of previous tooth pass periods for the
stability of partial-immersion operations is illustrated by the results presented in Fig. 9.

Here, for 25% immersion down milling operations, a series of stability charts generated by considering
different values of the index j are presented. When only the immediate previous tooth cutting action is
considered, the stability chart appears to be smooth with high peaks. As the number of previous tooth pass
periods is increased, the stability chart starts differing considerably from that obtained with one tooth pass
period. The peaks at the intersection of two lobes are lower than those previously obtained. It is expected
that as the number of previous tooth pass periods is increased, the regenerative effects can become stronger,
and as a consequence, result in lower stability limits. As the index j is increased to three and then to four,
the corresponding stability charts are close to each other. The results shown in Fig. 9 are illustrative of the
importance of considering a sufficient number of previous tooth pass periods in determining stability
boundaries.

3.5. Effect of feed rate on stability

The feed rate is represented by the parameter f in Eq. (A.4) and the subsequent equations in Appendix
A. As shown there, the dynamic uncut chip thickness depends on the feed rate. In other studies, in which
full-immersion and high-immersion operations are only considered, the feed rate does not affect the stability
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Fig. 9. Stability charts: effect of number of previous tooth pass periods.

predictions obtained on the basis of linear, time periodic systems with time delays. However, as shown next,
the feed rate can be quite important in predicting the stability boundaries for partial-immersion operations
where loss of contact effects can be quite significant.

In Figs. 10 and 11, the effect of feed rate on the stability charts of a full-immersion operation and a 25%
immersion operation are shown, respectively. The nominal feed rate that has been used throughout for the
previous simulations and during the experiments is f = 0.102 mm/tooth. Apart from this rate, two other
feed rates are considered. One of them is higher with a value of f = 0.510 mm/tooth, and the other rate is
lower with a value of /= 0.0204 mm/tooth. For full-immersion milling operations, the effect of feed rate on
stability limits is not pronounced. However, for the 25% immersion milling operation, the stability limits
for the nominal and lower feed rates remain close while the stability limits for the higher feed rate differ
considerably from those obtained at the nominal feed rate. This is attributed to the loss of contact effects,
which can be dominant during partial-immersion operations.

3.6. Effect of feed direction on stability

When a flexible tool is used in milling operations, motions along the two orthogonal directions in the
horizontal plane can force the tool tip to move along an elliptical orbit and the associated characteristics
will depend upon the relative participation of the respective modal components along the two orthogonal
directions. Depending upon the modal parameters associated with the two directions, instability due to
mode coupling (equivalent to flutter instability) may occur as discussed by Tlusty and Ismail (1981). Here,
the influence of the tool modal parameters on the stability charts for partial-immersion operations is in-
vestigated.

In Fig. 12, several stability charts for 25% immersion milling operations are presented. The curves
marked with the legend “original” refers to the same system configuration as used in the previous cases, and
the curves marked with the legend “‘reversed” refers to a system where the two sets of modal parameters
along X- and Y-directions in the original system have been switched. In a machining context, this is
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equivalent to having the feed direction of the original system rotated by an angle of 90°. Results for both
down milling and up milling operations are included. For the case considered, the stability limits of the
original system are much higher than the corresponding stability limits obtained in the reversed sys-
tem during the down milling operation. The situation is the opposite when the up milling operation is
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Fig. 12. Stability limits for different tool orientations.

considered. Hence, a good knowledge of the workpiece—tool system dynamics and stability can help one
choose an appropriate feed direction for higher machining stability. This can be important for path
planning in machining operations.

4. Closure

A unified mechanics based model has been used to simulate the dynamics of a workpiece—tool system for
a range of milling operations. Both regenerative effects and loss of contact effects are taken into account
and their effect on the stability is investigated. From the results obtained thus far, it can be stated that
stability predictions based on linear, time periodic systems with time delays may be sufficient for full-
immersion and high-immersion milling operations. However, this is not true of partial-immersion milling
operations, for which loss of contact effects have a strong influence on the stability boundaries. The dif-
ferent instabilities that arise during partial-immersion operations have been addressed, and changes in
stability charts with respect to aspects such as immersion ratio, feed rate, number of previous tooth pass
periods, and feed direction have also been examined. The numerical results obtained are also found to
compare well with corresponding experimental results. It has also been pointed out that the common as-
sumption made in current milling models that the tooth contact time is constant from one spindle cycle to
the next may not be true for all milling operations, in particular, for partial-immersion operations.
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Appendix A

For completeness, some details of the mechanics based model discussed by Balachandran and Zhao
(1999b) are included here along with other details not discussed in that article. First, some of the details
associated with the determination of the cutting forces are discussed. If the helical tool is decomposed into a
set of infinitesimal disk elements along its axis, the cutting action at the interface of an element and the
workpiece can be explained as an oblique cutting process, which is illustrated in Fig. 13. Here, # is the
inclination angle (with # = 0 for orthogonal cutting), ¢, is the normal rake angle, and #, is the chip flow
angle. Based on experimental observations that the chip flow angle is close to the inclination angle in
oblique cutting, the cutting action in the normal cutting plane can be approximated as orthogonal cutting
because the chip flow can be considered to be two dimensional (Lin and Oxley, 1972).

In Fig. 14, the decomposition of the cutting velocity vector into two components on the workpiece
surface is shown. Component V] is within the normal cutting plane, and component V5 is along the per-
pendicular direction to this plane. Due to component V3, there is a relative (rigid body) sliding motion
between the rake face of the tool and the inner surface of the chip (Fig. 13).

The oblique cutting action can be modeled as having the following two force components: (a) orthogonal
cutting along the direction of 7] that generates the forces F; and F, and (b) a relative sliding motion between
the tool and the chip along the direction of V5 that generates a frictional force F, as shown in Fig. 13. F; is
the thrust force and F; is the normal force that are associated with orthogonal cutting process within the
normal cutting plane, which can be determined by using orthogonal cutting theory from the machining

Fig. 13. Oblique machining: cutting force components are shown along n, ¢, and u directions.
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Fig. 14. Decomposition of the cutting velocity vector.

parameters (Oxley, 1989). In simple linear orthogonal cutting model, the two components of the cutting
forces can be finally reduced to be proportional to the product of the width of cut w and uncut chip
thickness 4. Including the scaling effect of inclination angle #, they can be expressed as

Fo kihw
- cosy’ (A.1)
Fn :knE7

where k; is the specific cutting energy and £, is proportionality factor associated with orthogonal cutting.
Having obtained F; and F,, one can determine the frictional force F, from Fig. 15 as being proportional to
the pressure force P:

F, = uP = plF.cos g, — Fysin g, (A2)

where p is the dynamic friction coefficient for the sliding motion between the inner surface of the chip and
the rake face of the tool.

In the above approach, which is named as “refined orthogonal cutting method”’, the cutting forces in
oblique machining are approximated in terms of orthogonal cutting parameters. The forces determined in
the static case above are extended to the dynamic case by replacing the static chip thickness /2 in Eq. (A.1)
with the dynamic uncut chip thickness. This thickness is given by

h(t,i,z) = A(¢) sin 0(¢,i,z) + B(t) cos 0(t,i,z), (A.3)

where i refers to a cutting tooth, z refers to the axial location along the tooth, and A(¢) and B(¢) represent
the respective relative motions of workpiece-tool system along the X- and Y-directions; 0(z, i,z) represents
the position angle; then, including previous tooth cutting actions, one can write these motions in the form

A(t) = q:(t) — q:(t — j71) + qu(t) — qu(t — j11) +jf T, (A4)

B(t) = Qy(t) - qy(t —Jt2) + qu(t) — qu(t — jr2),
where 7, and 7, are the respective one tooth cutting periods along X and Y directions, and j is the number of
a previous tooth cutting action associated with maximum relative displacement between the tool and
workpiece along their positive radial directions in which the tool and workpiece move toward each other.
The time delay terms 7, and 7, can be calculated from the following two equations:
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Fig. 15. Cross-section along normal cutting plane.

1
=,
oN
 4nrQ (A-3)
2T RO £

In Eq. (A.5), Q is the spindle rotation speed and f'is the feed rate. The difference between 7, and 1,, which
is due to the feed motion, is usually less than 2%. In the simulations, the delay terms as well as the value of j
are determined by the following relations for limited numbers of the considered delay terms

%((t 7].71) —jfu+ qu(t 7j’l,'1) = max{%r(t - Tl) - fT JFQu(t - ‘L']),
g.(t —271) = 2f 11 + q.(t — 211),.. .}, (A.6)
qy(t — j12) + qo(t — j1o) = max{q,(t — 72) + q,(t — 12), ¢, (t — 212) + q,(t — 212), ...}

The maximum allowable limit for j and the values of 7; and 7, can affect the regeneration during the
simulation of the cutting process. Other details about the mechanics model can be found in the article of
Balachandran and Zhao (1999b).
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